A Bound on the Deviation Probability for Sums of Non-negative Random Variables
نویسندگان
چکیده
A simple bound is presented for the probability that the sum of nonnegative independent random variables is exceeded by its expectation by more than a positive number t. If the variables have the same expectation the bound is slightly weaker than the Bennett and Bernstein inequalities, otherwise it can be significantly stronger. The inequality extends to one-sidedly bounded martingale difference sequences.
منابع مشابه
Strong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملAsymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables
Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...
متن کاملThe Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables
In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...
متن کاملLarge-deviation Probabilities for Maxima of Sums of Independent Random Variables with Negative Mean and Subexponential Distribution∗
Abstract. We consider the sums Sn = ξ1 + · · · + ξn of independent identically distributed random variables with negative mean value. In the case of subexponential distribution of the summands, the asymptotic behavior is found for the probability of the event that the maximum of sums max(S1, . . . , Sn) exceeds high level x. The asymptotics obtained describe this tail probability uniformly with...
متن کاملWavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables
Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.
متن کامل